Handwritten Nushu Character Recognition Based on Hidden Markov Model

نویسندگان

  • Jiangqing Wang
  • Rongbo Zhu
چکیده

This paper proposes a statistical-structural character learning algorithm based on hidden Markov model for handwritten Nushu character recognition. The stroke relationships of a Nushu character reflect its structure, which can be statistically represented by the hidden markov model. Based on the prior knowledge of character structures, we design an adaptive statisticalstructural character learning algorithm that accounts for the most important stroke relationships, which aims to improve the recognition rate by adapting selecting correct character to the current handwritten character condition. We penalize the structurally mismatched stroke relationships using the prior clique potentials and derive the likelihood clique potentials from Gaussian mixture models. Theoretic analysis proves the convergence of the proposed algorithm. The experimental results show that the proposed method successfully detected and reflected the stroke relationships that seemed intuitively important. And the overall recognition rate is 93.7 percent, which confirms the effectiveness of the proposed methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-line Arabic Handwritten Isolated Character Recognition using Hidden Markov Models

This paper presents a recognition system for Arabic handwritten isolated characters. The recognition system is based on hidden Markov model (HMM). The entire system is capable of recognizing the Arabic handwritten characters. First, the system removes all the variation in the character images. Second, Features are extracted using the sliding window technique with HMM. Then, the HMM is used for ...

متن کامل

Feature Evaluation for Handwritten Character Recognition with Regressive and Generative Hidden Markov Models

Hidden Markov Models constitute an established approach often employed for offline handwritten character recognition in digitized documents. The current work aims at evaluating a number of procedures frequently used to define features in the character recognition literature, within a common Hidden Markov Model framework. By separating model and feature structure, this should give a more clear i...

متن کامل

Holistic Farsi handwritten word recognition using gradient features

In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...

متن کامل

Recognition of Myanmar Handwriting Text Based on Hidden Markov Model

Handwriting recognition is one of the most challenging tasks and exciting areas of research in computer vision. Numerous document recognition methods have been proposed in various languages and character set such as Arabic, India, Korean, Japanese, Chinese and so on. This paper presents the recent result of the research work of Myanmar handwriting text recognition and translation. Each segmente...

متن کامل

Handwritten English Character Recognition using HMM, Baum-Welch and Genetic Algorithm

It is the problem of computer science that how we detect the handwritten character and word, so it is also the problem in the field of image processing and pattern recognition of computer science. The meaning of handwritten character and word recognition refers to the identification of the characters or word which is written by a human being. Our approach is this, how this problem solved correc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010